Egyedülálló kutatások tanúi lehetünk az ELTE Elméleti Fizikai Tanszékén. Az emberiség egyik legősibb problémája, hogy szeretné megérteni saját létének okát; azt, hogy miért is van Világegyetem, és miért van benne anyag?
A korábban ismert fizikai egyenletek szerint az ősrobbanás után anyag és antianyag egyforma mennyiségben keletkezett, mert ez a két anyagfajta egyenértékű. De a világegyetemben mindenhol csak anyagot találunk. A kutatások szerint ezért a barion-aszimmetriáért egy fázisátmenet a felelős.
Kutatásaik első szakaszában, az ELTE Elméleti Fizikai Tanszékének kutatói elsősorban a barion-aszimmetria modellezésének, illetve dinamikus módon történő generálásának lehetőségeit kutatták.
A kutatások második szakaszában már inkább az erősen kölcsönható anyag viselkedésére koncentráltak a szakemberek. A kérdés elsősorban az volt, léteznek-e olyan körülmények, amelyek között az ún. "bezárási elmélet" törvényeit legyőzve megvalósul az a fázisátmenet, melynél a részecske belsejébe zárt kvarkok kiszabadulnak. Mindezen kutatásokat a már korábban felállított elmélet rácselméleti változatának segítségével végezték, amelynek lényege az, hogy a tér és idő felosztása után kapott négydimenziós rács segítségével modellezték a fizikai jelenségeket.
A feltételezés szerint létezik olyan magas hőmérséklet és anyagsűrűség, amelyen megtörténhet ez a fázisátmenet. Az ELTE kutatói nemzetközileg is nagy port kavart, igen érdekes eredményeket értek el, hiszen módszerükkel, amellyel bebizonyították az erősen kölcsönható anyagban a "kritikus opaleszcencia" létét, sikerült olyan pontot találni a hőmérséklet-anyagsűrűség függvényében, ahol valóban létrejön a fázisátmenet, a kvarkok legyőzik a bezárási elmélet törvényeit és kiszabadulnak. Az eredmény világszerte nagy elismerést kapott, hiszen nem csupán választ ad a feltett kérdésre, hanem azon jóval túlmutat, új kutatási irányt jelezve ezzel a kutatók számára.
"Meglepő, hogy a rácselmélet segítségével megoldhatók az egyenletek, ami azonban a legnagyobb örömmel tölt el bennünket, az az, hogy nem egyszerűen választ kaptunk kérdésünkre, hanem annál jóval többet. A számítások során megtalált kritikus ponton ugyanis a kvarkok nem csupán kiszabadulnak a bezárási törvény erőit legyőzve, hanem a korrelációs hosszak végtelenné válnak, és az egész anyag opálos lesz." – mondta Dr. Fodor Zoltán, a kutatások egyik vezetője.
A fokozatos közelítések módszerét használták, hiszen a fizikai egyenletek bonyolultsága miatt azok pontos kiszámítása lehetetlen, közelítő értékek is csak számítógépes környezetben, másodpercenként több milliárd művelet elvégzésére képes szuperszámítógépek segítségével nyerhetők.
"Most már a finomítási szakaszban járunk, azaz ugyanezeken az egyenleteken a pontosság érdekében nagyobb térfogatban, finomabb rácsfelosztás mellett végezzük a számításokat." – folytatta a szakember. "Ez az a szakasz, ahol a nagy teljesítményre igazán szükség van, ezért döntöttünk az Intel Pentium 4 processzoros számítógépek mellett, amelyek másodpercenként 1,7 milliárd műveletet képesek elvégezni. Az egyenletek számítása így is hónapokig eltart; ezalatt megközelítőleg 10^18 (1 000 000 000 000 000 000) műveletet végez el házi szuperszámítógépünk."
Big Bang a Pentium 4-gyel
Az Univerzum keletkezésével, közismert nevén a "Nagy Bummal" kapcsolatos elméleti fizikai kutatásaikat 128, Intel Pentium 4 processzorral hajtott PC fürtözésével összeállított szuperszámítógép segítségével végzik az Eötvös Loránd Tudományegyetem (ELTE) Elméleti Fizikai Tanszékének kutatói (Csikor Ferenc és Fodor Zoltán professzorok, Katz Sándor tanársegéd és számos diákjuk).
Véleményvezér

A pofátlanságnak nincs határa, immár Orbán Viktorral reklámoznak egy nyilvánvaló átverést
Ennek aztán ne dőljön be senki.

Már az első tíz között a budapesti lakhatási költségek
Több mint 11 év munka kell egy átlagos budapesti lakáshoz.

A világ legnagyobb gyarmattartója jelenleg Oroszország
Egykor önálló népek éltek a mai Oroszország nagy részén.